MANGANESE AS A NEURODEVELOPMENTAL TOXICANT

Roberto Lucchini, Silvia Zoni, Elisa Albini
(Occupational Health, University of Brescia, Italy)

Cynthia Kern, Donald Smith
(Environmental Toxicology
University of California, Santa Cruz, USA)
Avoid deficiency and toxicity

- Complicated dynamics based on complex kinetics
Mn adult neurotoxicity

- **Occupational:** mines, ferroalloy, welders, etc
 - fine motor impairment, gait deficits, dystonia
 - Mood changes towards aggressivity

- **Globus pallidus as critical target**

T(1)-Weighted MRI hyperintensity
Target Globus pallidus

- GP: dopaminergic and GABAergic control of motor functions and mood
Mn adult neurotoxicity

Environmental:
- Increased frequency of parkinsonism from
 - Mexican mines (Rodriguez-Agudelo et al., 2006)
 - Italian ferroalloy plants (Lucchini et al., 2007)
 - Canadian industrial sites and car traffic MMT (Finkelstein and Jerrett, 2007)

 OR for PD = 1.034 (1.00-1.07) per 10 ng/m³ increase of Mn in TSP
Prenatal exposure: animals

- Drinking water exposure to dams:
 - increased brain Mn levels in pups and adolescent (Seth 1977, Chandra and Shukla 1979, 1980, 1981)
 - increased activity at PND 17 (Pappas 1996)
- Inhalation study to dams:
 - aberrations in offspring behavior (Lown 1984)
- Maternal dietary intake increases fetal Mn levels (Jarvinen 1975, Kirchgessnes 1981)
- Placenta partially sequesters inhaled manganese, limiting fetus exposure (Dorman et al 2005)
Pre/post-natal: humans

- Learning disabilities in Chinese children 11-13 yrs associated with MnW 241- 346 μg/L (300 EPA lifetime health advisory level)

 (He et al 1994)

- Mn tooth enamel (which develops 20 gestational wk - 7 mo postnatal) associated to behavioral outcomes

 (Ericson et al 2007)
Manganese levels in mother's and cord blood, mother's and newborn hair, and placental tissue in initial population and the sample followed up to 6 years

<table>
<thead>
<tr>
<th>Manganese levels</th>
<th>Initial population</th>
<th>Follow-up sample at 6 years of age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mother</td>
<td>Cord/newborn</td>
</tr>
<tr>
<td>Blood manganese (µg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>222</td>
<td>222</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>20.4</td>
<td>38.5</td>
</tr>
<tr>
<td>5th–95th percentiles</td>
<td>11.1–40.4</td>
<td>19.1–71.2</td>
</tr>
<tr>
<td>Range</td>
<td>6.3–151.2</td>
<td>14.9–92.9</td>
</tr>
<tr>
<td>Hair manganese (µg/g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>0.36</td>
<td>0.75</td>
</tr>
<tr>
<td>5th–95th percentiles</td>
<td>0.16–0.87</td>
<td>0.22–4.25</td>
</tr>
<tr>
<td>Range</td>
<td>0.10–3.24</td>
<td>0.05–13.33</td>
</tr>
<tr>
<td>Placental manganese (µg/g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Geometric mean</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>5th–95th percentiles</td>
<td>0.06–0.16</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.01–0.49</td>
<td></td>
</tr>
</tbody>
</table>

No significant differences were observed between initial and follow-up populations (*t*-test was used).

Takser et al., 2004
Mn at birth associated with psychomotor sub-tests at 3 yrs not 9 mo not 6 yrs

No association with cognitive tests

Takser et al., 2004
MnW: High MnW and low AsW in Bangladesh

- Wasserman et al., 2006
Interaction Hair Mn/As on IQ from Tar-Creek, OK

- Wright et al., 2006
MnH from high MnW associated with hyperactive behavior

- Bouchard et al., 2007
Mn essentiality

- For metalloenzymes: arginase, glutamine synthetase (nitrogen metabolism), pyruvate carboxylase (carbohydrates synthesis)
- In tissues with high metabolic rate (brain for glutamine in astrocytes)
- Free radical defense (MnSOD)

developing brain needs Mn
Very efficient in regulating absorption and excretion rates in adults.
Adult vs Infant homeostasis

- **Dietary Mn Intake**
 - Adult ~ 10mg/ kg/ day
 - Breast-fed infants ~ 0.0005mg/ kg/ day
 - 20,000-times less than adults!

- **GI Mn Absorption**
 - Adults – 3-4% of ingested Mn
 - Infants ~ 80%

- **Mn Excretion / Retention**
 - Adults – significant hepato-biliary excretion
 - Infants – little hepato-biliary excretion

- **Brain Mn Uptake**
 - Adults – BBB regulates Mn uptake
 - Infants – immature BBB – Mn uptake poorly regulated
Therefore, there is a delicate balance between a great need for Mn and a possible overload, especially in infants.
Mn in Infant Formula

Human milk: 4ug/ L Mn (ppb)
Cow milk:
Formulas

Cow based: Similac 73ug/ L
Soy based: Isomil: 436ug/ L
ProsoBee: 749ug/ L
Enfamil: 1,289ug/ L

(Stastny, 1984)

*In the U.S. 20% of infants are fed soy formula, with 750,000 infants receiving soy formula every year (Mercola, 2001).
Outcomes:

- **Activity** - motor activity and behavior (SMART)
 - Analysis of Zones within arenas
 - Time spent and distance traveled
- **Learning / Memory** - 8-arm radial maze

Oral Mn Exposoure

- Vehicle (Sucrose sol’n)
- 25mgMn/kg/day
- 50mgMn/kg/day *(MIMICKS HIGH LEVEL IN FORMULA)*
- N=14 – 18 /treatment/outcome
Blood and Brain Mn increased by the end of Treatment on PND 21

Blood Mn Levels, PND 24

Brain Mn Levels, PND 24
Total Activity Males PND 23: 5-30 min, ANOVA p=0.0241

Mn increased activity
Increased activity in the center

Example of video motor track

Ratio Perimeter Distance: Center Distance 5-30 Minutes

Rodents usually prefer periphery of arena—favor thigmotaxis

Open arena is a measure of gross motor activity and reaction to a stressful event; not on exploration

Increase time in center indicates decrease response to stressful event
Mn decreases ability to learn

Percent of animals per treatment who reached the maze criteria

Mn Neonate: Maze: Males % success in learning criteria
(4 or less working errors 3 days in a row)

Control 25mg/kg 50mg/kg
Mn Treatment

Mn increases time needed to learn

No of days to reach learning criteria

Control 25mg/kg 50mg/kg
Mn Treatment

*
In summary

- Pre- and post-natal exposure increase Mn levels and cause motor and cognitive impairment
- Pre- and post-natal exposure + adult environmental and occupational ⇒
- Neurodegeneration as cumulative long term effect ?